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A bit of history

The word “algebra” is derived from the Arabic word al-gebr, meaning reunion of
broken parts. During the 11th century, it was perhaps the Islamic world that
represented the most mathematically sophisticated civilization. However, there
was no algebraic manipulation of the kind seen in modern texts, and medieval
mathematical writing was rethorical, with everything being described in words.
This “algebra” is the algebra of real numbers, which for millenia was explicitly
defined as the science of solving equations.
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A bit of history

Most of the major ancient civilizations, the
Babylonian, Egyptian, Chinese, and Hindu, dealt
with the solution of polynomial equations, mainly
linear and quadratic equations. The Babylonians
(c. 1700 BC) were particularly proficient
algebraists. They were able to solve quadratic
equations by methods similar to ours.
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A bit of history

It is the Rennaisance (XVI century). After thousands of years of ignoring the
formula for cubic equations, in 1535, Tartaglia announced he had found a formula
for cubic equations of the form 22 4+ az2 = b (that is, without the x term). Soon,
he was challenged by Antonio Fior, a pupil of Scipio del Ferro, who had already
found a formula for solving cubic equations of the form 2% +ax = b (that is,
without the 22 term). A few days before the contest, Tartaglia found the formula
for general cubic equations.

Nicolo de Fontana (Tartaglia)
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A bit of history

A bit of history

For some time, Tartaglia kept his method to himself. However, Girolamo Cardano
persuaded him to share his secret (Tartaglia asked Cardano never to reveal his

secret, and Cardano promised to help him become an artillery adviser to the
Spanish army).
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A bit of history

For some time, Tartaglia kept his method to himself. However, Girolamo Cardano
persuaded him to share his secret (Tartaglia asked Cardano never to reveal his

secret, and Cardano promised to help him become an artillery adviser to the
Spanish army).

A few years later, Cardano published Ars Magna, in which he presented the
algebraic knowledge of his time, including Tartaglia's method.

ARS MAGNA
OR THE RULES
OF ALGEBR

Girolamo Cardano
Tonsated oy T Renera Vimer

Nicolo de Fontana (Tartaglia)
Girolamo Cardano
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A bit of history

The next great step in the progress of algebra was made by Cardano's personal
servant, Ludovico Ferrari, who found the general method for solving quartic
equations (2% + ax® + ba® + cx = d).

ARS MAGNA
OR THE RULES
OF ALGEBRA

Girolamo Cardano

Tordated by T.Rhard Wimer

. Ludovico Ferrari
Girolamo Cardano
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A bit of history

Now the challenge was clear: to find a formula for the roots of equations of

degree 5 or higher. During the next centuries, there was hardly a mathematician
of distinction who did not try to solve this problem.
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A bit of history

Now the challenge was clear: to find a formula for the roots of equations of
degree 5 or higher. During the next centuries, there was hardly a mathematician
of distinction who did not try to solve this problem.

It was a great surprise when, in 1824, a young Niels Abel showed that such a
formula do not exist. This discovery opened the doors to new directions in
mathematics.

Niels Abel
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A bit of history

Around those days (XIX century), different characters started playing around with
new algebras. To date, hundreds of algebras have been invented (discovered?).

Evariste Galois Carl Friedrich Gauss
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A bit of history

Evariste Galois
o His father committed suicide.
o He was twice refused admittance to the Ecole Polytechnique.

@ He showed his work to Cauchy, Fouries, and Poisson.

o they lost it,
o died,
o or did not get it.

@ He was accepted to the Ecole Normale, but was soon rejected.
o He was jailed twice.

o He died in 1832 at the age of 20 at a duel.

@ The night before the duel, he collected his findings and sent them to a friend.

o His works were published 15 years after his death.
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Algebraic structures
So, what is algebra?

Abstract algebra
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Algebraic structures

Algebraic structures

So, what is algebra?

Nowadays, algebra is defined as the the study of algebraic structures, which are
sets of objects and a set of certain operations over such sets.
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Algebraic structures

Algebraic structures

So, what is algebra?

Nowadays, algebra is defined as the the study of algebraic structures, which are
sets of objects and a set of certain operations over such sets.
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Algebraic structures

Algebraic structures

So, what is algebra?

Nowadays, algebra is defined as the the study of algebraic structures, which are
sets of objects and a set of certain operations over such sets.

el
J WP
+ mix + chords

Ok, these examples are exaggerated. The point is that the content of the sets is

irrelevant. This is why algebra is often known as abstract algebra (or modern
algebra).
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Algebraic structures

Algebraic structures

So, what is algebra?

Nowadays, algebra is defined as the the study of algebraic structures, which are
sets of objects and a set of certain operations over such sets.

el
J e
+ mix + chords

Ok, these examples are exaggerated. The point is that the content of the sets is

irrelevant. This is why algebra is often known as abstract algebra (or modern
algebra).

A list of 357 algebraic structures:
https://math.chapman.edu/~jipsen/structures/doku.php
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Clock arithmetic

({0,1,2,3,4,5} , +)

1+1=
3+2=
5+2=
244 =
2 4=
2+2=

u}
)
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Cleek Modular arithmetic

<{O7 ]‘7 27 37 4? 5} i +>

1+1=2
3+2=5
5+2=1
244 =
2 4=
2+2=
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Cleek Modular arithmetic
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1+1=2
3+2=5
5+2=1
2+4=0
2 4=
2+2=
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Cleek Modular arithmetic

<{O7 ]‘) 27 37 4? 5} i +>

1+1=2 1+1=2( )
3+2=5  3+2=5(mod 6)
54+42=1 5+2=1(mod 6)
2+4=0 2+4=0(mod 6)
9 4=4 2—4=4(mod 6)
242 =

=] F = = DA
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Cleek Modular arithmetic

<{O7 ]‘) 27 37 4? 5} i +>

1+1=2 1+1=2( )
3+2=5  3+2=5(mod 6)
54+42=1 5+2=1(mod 6)
2+4=0 2+4=0(mod 6)
9 4=4 2—4=4(mod 6)
2+2=4  2+2=4(mod 6)

=] F = = DA
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Triangle symmetries

This is a symmetry problem. How many ways can you rotate or flip the triangle?

2
R
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Triangle symmetries
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Triangle symmetries
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Triangle symmetries
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Triangle symmetries
1

'I"'I"I‘=r3=1
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Triangle symmetries
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Triangle symmetries
1

.
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Triangle symmetries
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Triangle symmetries
1
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Friangle-symmetries Dihedral group

In the case of a triangle, there are six symmetries.
So, the algebraic structure is

<{1’T7T27f7T’f7T2'f}v >
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Friangle-symmetries Dihedral group

In the case of a triangle, there are six symmetries.
So, the algebraic structure is

Notice that,

<{1,7’,7‘2,f,7'~f,7“2'f}, >

vS,1-S=5 and S-1=5
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Friangle-symmetries Dihedral group

In the case of a triangle, there are six symmetries.
So, the algebraic structure is

Notice that,

<{1,7’,7‘2,f,7'~f,7“2'f} ) >
and

vS,1-S=5 and S-1=5

VS 3(=S), S-(=S)=1 and (—=S)-S=1
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Integer sum

q...

, —

3,-2,-1,0,1,2,3,...}, +)
This is the traditional sum operator

542=7
44 (-8)=—4
10+ (—=10) =0
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Integer sum

q...

, —

3,-2,-1,0,1,2,3,...}, +)
This is the traditional sum operator

54+40=5
542=17 0 (—8) = 8
4+ (-8)=—4 B
10+ (=10) =0

z+0=0

O+z==x
oy <3 =) «= Hace



Groups
What is common to all these examples?
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Groups
What is common to all these examples?

A
Set

Z
{07172737475} {1,7“,7“2,f,7’-f77“2~f}

Z
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Groups
What is common to all these examples?

A
Set
Operation

Z
{07172737475} {1,7",7"2,f,7"f77'2'f}
_|_
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Groups
What is common to all these examples?

A z
Set {07172737475} {1,7“,7“2,f,7’-f77“2~f}

Operation + .

Closure v

v
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Groups

What is common to all these examples?

A Z
Set {0,1,2,3,4,5} {1,r,r% f,r- f,r%- f} 7
Operation + . +
Closure v v v
Identity 0 1 0
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Groups

What is common to all these examples?

A Z

Set {0,1,2,3,4,5} {1,r,r% f,r- f,r%- f} 7

Operation + . +

Closure v v v

Identity 0 1 0
Inverse z+(—x)=0 z-(—x)=1 z+(—z)=0

=] F = = DA
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Groups

What is common to all these examples?

A z

Set {07172737475} {1,7’,7’2,f,7"f77“2'f} Z

Operation + . +

Closure v v v

Identity 0 1 0
Inverse z+(—x)=0 z-(—x)=1 z+(—z)=0

Associativity v v v
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Groups

Groups

Definition

A group is an algebraic structure (G, +), such that
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Groups

Groups

Definition

A group is an algebraic structure (G, +), such that
o (G is a set of elements,
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Groups

Groups

Definition

A group is an algebraic structure (G, +), such that
o (G is a set of elements,

© + is a binary operation,
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Groups

Groups

Definition

A group is an algebraic structure (G, +), such that
o (G is a set of elements,
© + is a binary operation,

o z +y = z (closure property),

=] F = E DA
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Groups

Groups

Definition

A group is an algebraic structure (G, +), such that
o (G is a set of elements,

© + is a binary operation,
o z +y = z (closure property),
o z + (—x) = e (inverse),

[m] = = =
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Groups

Groups

Definition

A group is an algebraic structure (G, +), such that
o (G is a set of elements,

+ is a binary operation,

x + (—x) = e (inverse),

°
o z +y = z (closure property),
o
o y+e=-e+y=y (identity),

=] F = E DA
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Groups

Groups

Definition

A group is an algebraic structure (G, +), such that
o (G is a set of elements,
© + is a binary operation,
o z +y = z (closure property),
o z + (—x) = e (inverse),
o y+e=-e+y=y (identity),
and (z +y) 4+ z =z + (y + 2) (associativity).
Where x,y, z,e € G and e is unique.

=] F = E DA
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Groups

a necessary property of groups.

In the dihedral group, r - f is different from f-r. So, commutativity is not always

=] F = E DA
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Groups

In the dihedral group, r - f is different from f-r. So, commutativity is not always
a necessary property of groups.

Definition

A group with the commutative property is called a commutative group or an
abelian group.

=] F = E DA
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Groups

In the dihedral group, r - f is different from f-r. So, commutativity is not always
a necessary property of groups.

Definition

A group with the commutative property is called a commutative group or an
abelian group.

Definition

|G| is the order of the group.

=] F = E DA
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Groups

a+b=a+c implies b=c and

b+a=c+a implies b=c

(Cancellation law) If (G, + ) is a group and a, b, ¢ are elements of G, then
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Groups

(Cancellation law) If (G, + ) is a group and a, b, ¢ are elements of G, then

a+b=a+c implies b=c and
b+a=c+a implies b=c

a+b=a+c

O
L= (= = = YIRTC
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Groups

(Cancellation law) If (G, + ) is a group and a, b, ¢ are elements of G, then

a+b=a+c implies b=c and
b+a=c+a implies b=c

a+b=a+c
—a+(a+b)=—-a+(a+c)

O
L= (= = = YIRTC
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Groups

(Cancellation law) If (G, + ) is a group and a, b, ¢ are elements of G, then

a+b=a+c implies b=c and
b+a=c+a implies b=c

a+b=a+c
—a+(a+b)=—-a+(a+c)
(ma+a)+b=(—a+a)+c

O
= =1 = = VIR

(CONAHCYT INAOE) Abstract algebra




Groups
(Cancellation law) If (G, + ) is a group and a, b, ¢ are elements of G, then

a+b=a+c implies b=c and
b+a=c+a implies b=c

a+b=a+c
—a+(a+b)=—-a+(a+c)
(ma+a)+b=(—a+a)+c

e+b=e+c

O
= =1 = = VIR
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Groups

(Cancellation law) If (G, + ) is a group and a, b, ¢ are elements of G, then

a+b=a+c implies b=c and
b+a=c+a implies b=c

a+b=a+c
—a+(a+b)=—-a+(a+c)
(ma+a)+b=(—a+a)+c
e+b=e+c
b=c

O
= =1 = = VIR
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Groups

(Cancellation law) If (G, + ) is a group and a, b, ¢ are elements of G, then

a+b=a+c implies b=c and
b+a=c+a implies b=c

a+b=a+c
—a+(a+b)=—-a+(a+c)
(ma+a)+b=(—a+a)+c
e+b=e+c
b=c

The second part is proved analogously. O

= =1 = = VIR
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Groups

If (G, + ) is a group and a, b are elements of G, then

a+b=e implies a=—-b and b= —a
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If (G, + ) is a group and a, b are elements of G, then

a+b=e implies a=—-b and b= —a
By definition,
a+(—a)=e

(CONAHCYT INAOE)
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If (G, + ) is a group and a, b are elements of G, then

a+b=e implies a=—-b and b= —a
By definition,
a+(—a)=e
Thus,

at+b=a+(—a)

Groups
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If (G, + ) is a group and a, b are elements of G, then

a+b=e implies a=—-b and b= —a
By definition,
a+(—a)=e
Thus,
By the cancellation law

at+b=a+(—a)

=] F = = DA
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If (G, + ) is a group and a, b are elements of G, then

a+b=e implies a=—-b and b= —a
By definition,
a+(—a)=e
Thus,
By the cancellation law

at+b=a+(—a)

Groups

Analogously, a = —b

=] F = = DA
(CONAHCYT INAOE) Abstract algebra




Groups
If (G, + ) is a group and a, b are elements of G, then

—(a+b) = (-b) +(-a)
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Groups

If (G, + ) is a group and a, b are elements of G, then

—(a+b) = (-b) +(-a)

(@+0) + ((=b) + (=a)) = a+ ((b+ (b)) + (=a))

O
B —————— ]

(CONAHCYT INAOE) Abstract algebra



Groups

Groups

If (G, + ) is a group and a, b are elements of G, then

—(a+b) = (-b) +(-a)

(a+0)+ ((=b) + (—a)) =a+ ((b+ (-b) + (—a))
=a+ (e+ (—a))

O
B —————— ]
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Groups

Groups

If (G, + ) is a group and a, b are elements of G, then

—(a+b) = (-b) +(-a)

(a+b)+ ((=b) + (=a)) = a+ ((b+ (=b)) + (—a))
=a+ (e+ (—a))
a+ (—a)

B —————— ]
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Groups

Groups

If (G, + ) is a group and a, b are elements of G, then

—(a+b) = (-b) +(-a)

(a+b)+ ((=b) + (—a)) =a+ ((b+ (-b)) + (—a))
=a+ (e+ (—a))
=a+(—a)

B —————— ]
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Groups

If (G, + ) is a group and a, b are elements of G, then

—(a+b) = (-b) +(-a)

Therefore, a + b is the inverse of (—b) + (—a) and, by the previous theorem

(=b) + (=a) = —(a +)

O
R ——————————
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Groups
If (G, + ) is a group and a, b are elements of G, then

—(—a)=a
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Groups
If (G, + ) is a group and a, b are elements of G, then
—(—a)=a
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—(—a)=a

Groups
If (G, + ) is a group and a, b are elements of G, then

By one of the previous theorems

a+(—a)=e

a=—(—a)

(CONAHCYT INAOE)
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Cayley tables

X — )
1 L[-1] =
7 ; [NE
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Cayley tables

({1, -1,4, =i}, x) Observation
[ R The first row and column are
T 1 W . identical to the headers (assuming
. L the first listed element is the identity

-1 -1 1 | = 3

. ] . element).

1 1 - =11
—t | —1 T 1 -1

=] F = E DA
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Cayley tables

Each row and column has the
identity element.
X 1 | -1 4 —1
1 1 -1 4 —1i
-1/ -1 1 —1 i
i i —i | -1 1
—i | —1 i 1 -1

(CONAHCYT INAOE)
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Cayley tables

Ld,—i}, x ) Each row and column has the
! : identity element.

X 1 -1 1 —1
1 1 -1 4 —1

-1/ -1 1 | —i 3

i I I R B T B Because each element has an

=i | =i | 3 1 1 inverse. O
(CONAHCYT INAOE)
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Cayley tables

Observation
This table is symmetric about
diagonal.
X 1 -1 ) —1
1 1 -1 i —1

-1 | -1 1 —1 )

7 i - =11
—i | —1 ) 1 -1

(CONAHCYT INAOE)
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Cayley tables

(1, =1,4, =i}, x) This table is symmetric about
diagonal.
X 1 -1 ) —1
1 1 -1 7 —1 :
111 — ; Oservatlon — :
i i —i | —1 Since the operation is commutative,
= =i 3 1 _1 the group is abelian.

=] =
(CONAHCYT INAOE) Abstract algebra
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Cayley tables

Observation
X 1 | -1 4 | —i )
1 TR Notice that each element appears
s once in each row and column.
-1 -1 1 | —¢ | ¢
i i =i -1 1
-1 | =1 | 4 1 -1

(CONAHCYT INAOE)
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Cayley tables
Each element appears once in each row and column.
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Cayley tables

Each element appears once in each row and column.

g1

92

94

95

96

Assume that

axXr=axy

[} = =

DA
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Cayley tables

Each element appears once in each row and column.

Assume that

X 191192 T 94 Y G | - axXr=aXy
g1 | - | - =0 - 1=]- -
AR (=a) x (a xz) = (=a) x (a x y)

ga| - |- =l - = -] -
g5 | - | - [l - [ - | -
g | - - |-l - - - -

o> «F = = T Dae
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Cayley tables

Each element appears once in each row and column. l

Assume that
X 191192 T 94 Y G | - axXr=aXxXy
g | - | - 1-1-1- -] -
g2 | - | - ol - e - |- (—a) x (a xz) = (—a) x (axy)
a | - - |z|-lz|-]| - (—axa)xz=(—axa) Xy
ga | - | - =] -1-|-] -
gs | - | - B - BB - | -
g6 | - | - [ =] -1-1-1]-
O
o> «F =, «=» = 9AC
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Cayley tables

Each element appears once in each row and column. l

Assume that

X 191192 T 94 Y G | - axXr=aXxXy

o - [ - - - -

70 B R = R - R (—a) X (a x ) = (—a) X (a X y)
@ |- - lz|-|z|-| - (—axa)xz=(—axa) Xy
gl - | - b=l - b= - | -

gz — 1. 1.1 exx=exy

g | - | - = - = - | -

o> «F = = T Dae
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Cayley tables

Each element appears once in each row and column. l

Assume that

X 191192 T 94 Y G | - axXr=aXxXy

g | - |- fal - Pl - ] -

o2 | - | - Bl - o - | - (=a) x (a x z) =(-a) x (a x y)
a | - - |z|-lz|-]| - (—axa)xz=(—axa) Xy
gi | - |- 1= -1-1|- _

gz e e - exr=exy

ge | - | - |- - - - - T=y

o> «F = = T Dae
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Cayley tables

Each element appears once in each row and column.

Assume that

X 191192 T 94 Y G | - axXr=aXxXy

g | - |- fal - Pl - ] -

o2 | - | - Bl - o - | - (=a) x (a x z) =(-a) x (a x y)
a | - - lz|-z|-|- (—axa)xz=(—axa) Xy
gi | - |- 1= -1-1|- _

g‘; e e - exr=exy

ge | - | - |- - - - - r=y

This contradicts our initial assumption.
Thus, there is only one z at each row
and column. |
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Groups of order 1

Abstract algebra
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Groups of order 1

Trivial group
| ({e}, +)
e
G =1

(CONAHCYT INAOE)
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Groups of order 2

Abstract algebra
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Groups of order 2

<{€7 a}, n >

G| =2

(CONAHCYT INAOE)
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Groups of order 3
+

Abstract algebra
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Groups of order 3

+lelalbd
e e a b ({e,a,b}, +>
a | a|lble |G| =3
b ble a
o T =) «=» =T 9ar
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Groups of order 4

ol |+
ol |o|o

ol o+
ol oo

u}
)
l
n
it

DA
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Groups of order 4

ol |+
ol |o|o

ol o+
ol |o|o

Can you think of more groups of order 47

u}
)
l
n
it

DA
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Groups

Groups of order 4

Abstract algebra
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Groups of order 4

+ el a bl|ec
e e al|b|c
a a|clelbd Are these two groups different?
b blelcla
c c|bla e
+ el a bl|ec
e el al|b|c
alal b cle
b blclela
clclelal b

u}
)
l
n
it

DA
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Groups of order 4

+lela|b|c
e e al|b|c
a |l al  cle b Are these two groups different?
b blelcla
clcldlale Check this mapping:
+ el a bl|ec '
e ' ela|b|c -
/>
a alblcle
b blclela
c clela b

DA
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Groups of order 4

+lela|b|c
e e al|b|c
a |l al  cle b Are these two groups different?
b blelcla
clcldlale Check this mapping:
+lela cl|b '
e ela  c|b -
/>
a  alblelc
c |l clelbla
b blcla e

=] F = = DA

(CONAHCYT INAOE) Abstract algebra July 9 2024 47 /83



Groups of order 4

o 9 o +
ol oo

SO (o)

QIO (IS

D[S OO

>0 9 o 4+
>0 Q@ 0o

(SR RGNS el ]

QIS |0 O

(2O || o

(CONAHCYT INAOE)
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Are these two groups different?

Check this mapping:
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Subgroups

Definition

o (H,x) is a group and

Assume (G, ) is a group. (H, ) is a subgroup of (G, *) if
o HCQG.

This relationship is denoted by (H, *) < (G, *) or just H < G. Notice that G < G

=] F = E DA
(CONAHCYT INAOE) Abstract algebra




Homomorphism

A function from one algebraic structure to another that preserves the structure is
called a homomorphism (of the same form).

In terms of groups, a function ¢ : G — H is a homomorphism if

P(x xy) = ¢(z) o p(y)
where (G, %) and (H, o) are groups and z,y € G.

=] F = = DA
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Homomorphism

<{""_3)_25_1)0715273""}7 +> <{071}’ +>

Z = {even} U {odd}

even + even = even 0+ 0=0(mod 2)
even + odd = odd 0+1=1(mod 2)
odd + even = odd 14 0= 1(mod 2)

odd + odd = even 1+ 1=0(mod 2)

=] 5 = E DAy
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Homomorphism

<{""__3)__25__1)0715273""} ) +»

Z = {even} U {odd}

even + even = even
even + odd = odd
odd + even = odd

odd + odd = even

(CONAHCYT INAOE)

)]
even

odd -

Abstract algebra

{0,1}, +)

0+ 0= 0(mod 2)
0+1=1(mod 2)
14 0= 1(mod 2)
1+1=0( )

[m] = = =
July 9 2024

DA
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G- [
Homomorphism

(G, x) (H, o)
[ = -] w [-[- o [—1-1 e [-]-
z | == (@ry) = [ - o) |~ = Q@)oo ~ -
¢:G—H

oz xy) = d(z) 0 P(y)

o T = = T 9Dae
(CONAHCYT INAOE) Abstract algebra



Homomorphism

Given the group (Z , 4+) and ¢ : Z — Z.

Is () = 22 a homomorphism?

(CONAHCYT INAOE)
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Homomorphism

Given the group (Z , 4+) and ¢ : Z — Z.

Is () = 22 a homomorphism?
Is

o(z+y) = o(x) + ¢(y) ?

(CONAHCYT INAOE)
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Homomorphism

Given the group (Z , 4+) and ¢ : Z — Z.

Is () = 22 a homomorphism?
Is

Namely, is

o(z+y) = o(x) + ¢(y) ?

2@ +y)=2x+2y ?

=] F = E DA
(CONAHCYT INAOE) Abstract algebra



Isomorphism
Definition

A bijective homomorphism is called a isomorphism.

(CONAHCYT INAOE)

Abstract algebra
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Isomorphism
<{17_1v7:a _7;} ) X> <{0’17253} ) +>
X 1 -1 ) —1 + /0123
1 1 -1 ) —i 0O/0(1]2]3
-1 -1 1 —1 ) 11,230
) 7 —1 | —1 1 21213011
-1 | —1 ) 1 -1 3 /30112

=] F = E DA
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Isomorphism

<{17_1v7:a _7;} ) X> <{0’17253} ) +>
X 1 -1 ) —i + /10 2|13
1 1 -1 7 —1 0/0(2]1]3
-1 -1 1 —1 i 212031
i ) —i | =1 1 1 11320
—i | —1 ) 1 -1 3 /3 /1012

=] F = E DA
(CONAHCYT INAOE) Abstract algebra



Isomorphism

<{17_177:a _7;} ) X> <{0’17253} ’ +>
X 1 —1 9 — + 02 1 3
1 1 -1 i | —i 0 0 2 1 3
—1 | —1 1 —1 ) 2 1203 1
i i =i =1 1 1171 3 2 0
== ) 1 —1 3 3 1 0 2

=] = = = = HAE

(CONAHCYT INAOE) Abstract algebra



Automorphism
Definition
An isomorphism from one group to itself is called an automorphism.

(CONAHCYT INAOE)
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Automorphism

{0,1,2,3,4} , +) {0,1,2,3,4} , +)
+ /012 3 4 + 1024 13
0 01 2 3 4 0 0/2 4 1 3
1 ' 1/2 340 22 4/1 3|0
2. 2/3 4 0 1 4 141 3,0 2
3 3/4, 0 1 2 1 1[{3 024
4 14/0 12 3 3.3/0 2 4 1
oy <3 =» «=» = Wac
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Automorphism

{0,1,2,3,4} , +) {0,1,2,3,4} , +)
+ 10 1 2 3 4 + 10 2 4 1 3
0 0 1 2 3 4 0 0 2 4 1 3
1 1 2 34 0 2 2 4 1 3 0
2 2 3 4 0 1 4 4 1 3 0 2
33/ 4 0 1 2 1 1. 3 0|2 4
4 4 0 1 2 3 3 3.0 2 4 1
oy <3 =» «=» = Wac
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Rings

Rings
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Rings
Definition

A ring is an algebraic structure (G, + , X) such that
o addition (+) is associative and commutative,

o multiplication () is associative

(axb)yxc=ax(bxc)
o multiplication is distributive over addition

axX(b+e)=(axb)+(axc
(b+c)xa=(bxa

cXa)
o there are inverses for addition,
o multiplication and addition have an identity.

(CONAHCYT INAOE)

Abstract algebra
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Rings
Definition

Aring (G, +, X) is an abelian group with an extra operation x.
Multiplication is

@ associative and

o has an identity element.

Notice that multiplication does not require
@ inverses and

@ commutativity.

Besides, multiplication is distributive over addition

ax(b+c)=(axb)+ (axc)
(b+c)xa=(bxa)+(cxa)
m] = = =
(CONAHCYT INAOE) Abstract algebra

APRN G4
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Rings

The easiest examples of rings are the traditional number systems. The set Z of
the integers, with conventional addition and multiplication, is a ring called the
ring of integers. We designate this ring simply with the letter Z. The context
will make clear whether we are referring to the ring of the integers or the additive
group of the integers.

(CONAHCYT INAOE) Abstract algebra July 9 2024 64 /83



Rings

The easiest examples of rings are the traditional number systems. The set Z of
the integers, with conventional addition and multiplication, is a ring called the
ring of integers. We designate this ring simply with the letter Z. The context
will make clear whether we are referring to the ring of the integers or the additive
group of the integers.

Similarly, Q is the ring of the rational numbers, R is the ring of the real numbers,

and C the ring of the complex numbers. In each case, the operations are
conventional addition and multiplication.

(CONAHCYT INAOE) Abstract algebra July 9 2024 64 /83



Rings
Let (A, +, x) be any ring (it can also be denoted just by A). Since A under
addition is an abelian group
=] 5 = E DAy



- f]
Rings

Let (A, +, x) be any ring (it can also be denoted just by A). Since A under
addition is an abelian group

a+b=a+c

implies

b=c

(CONAHCYT INAOE)
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- f]
Rings

Let (A, +, x) be any ring (it can also be denoted just by A). Since A under
addition is an abelian group

a+b=a+c implies b=c
a+b=0 implies

a=-b and b= —a

(CONAHCYT INAOE)

Abstract algebra

Do
July 9 2024

65/83



- f]
Rings

Let (A, +, x) be any ring (it can also be denoted just by A). Since A under
addition is an abelian group

a+b=a+c implies b=c
a+b=0 implies a=—-b and b= —a

—(a+0) = (=a)+ (=b) = (=b) + (=a)

(CONAHCYT INAOE)
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- f]
Rings

Let (A, +, x) be any ring (it can also be denoted just by A). Since A under
addition is an abelian group

a+b=a+c implies b=c
a+b=0 implies a=—-b and b= —a
—(a+b) = (=a) + (=b) = (=) + (—a)
—(—a)=a

(CONAHCYT INAOE)
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Rings

addition is an abelian group

Let (A, +, x) be any ring (it can also be denoted just by A). Since A under

a+b=a+c implies b=c
a+b=0 implies a=—-b and b= —a
—(a+b) = (=a) + (=b) = (=) + (—a)
—(—a)=a

What happens in a ring when we multiply elements by zero or by inverses?

(CONAHCYT INAOE)

Abstract algebra
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Rings
Let a and b be any elements of a ring (A, +, x)

ax0=0 and 0 xa=0

(CONAHCYT INAOE)
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Let a and b be any elements of a ring (A, +, x)

ax0=0 and 0 xa=0
(axa)+0=(axa)

(CONAHCYT INAOE)

Rings
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Let a and b be any elements of a ring (A, +, x)

ax0=0 and 0 xa=0
(axa)+0=(axa)

=ax (a+0)

=] F = = DA
(CONAHCYT INAOE) Abstract algebra
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Let a and b be any elements of a ring (A, +, x)

ax0=0 and 0 xa=0
(axa)+0=(axa)

=ax (a+0)

Rings

=(axa)+ (ax0)
(CONAHCYT INAOE)
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Let a and b be any elements of a ring (A, +, x)

ax0=0 and 0 xa=0
(axa)+0=(axa)
By the cancellation law,

=ax (a+0)

Rings

=(axa)+ (ax0)

0=ax0
oy <3 = = Hace




Let a and b be any elements of a ring (A, +, x)

ax0=0 and 0 xa=0
(axa)+0=(axa)
By the cancellation law,

=ax (a+0)

Rings

=(axa)+ (ax0)

The second part is proved analogously.

0=ax0
oy <3 = = Hace




Rings
Let a and b be any elements of a ring (A, +, x)

ax(=b)=—(axb) and (—a) xb=—(axb)

(CONAHCYT INAOE)
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Rings

Rings

Let a and b be any elements of a ring (A, +, x).

ax(=b)=—(axb) and (—a) xb=—(axb)

(@ > (=b)) + (ax b) = a x ((=b) +b)

(CONAHCYT INAOE) Abstract algebra



Rings

Rings

Let a and b be any elements of a ring (A, +, x).

ax(=b)=—(axb) and (—a) xb=—(axb)

(ax (=b)) + (a x b) =ax ((—=b) +b)
=ax0

(CONAHCYT INAOE) Abstract algebra



Rings

Rings

Let a and b be any elements of a ring (A, +, x).

ax(=b)=—(axb) and (—a) xb=—(axb)

(ax (=b)) + (a x b) =ax ((—=b) +b)
=ax0
=0

(CONAHCYT INAOE) Abstract algebra



Rings
Let a and b be any elements of a ring (A, +, x).

ax(=b)=—(axb) and (—a) xb=—(axb)

(ax (=b)) + (a x b) =ax ((—=b) +b)
=ax0
=0

By one of the previous theorems on groups,

ax(=b)=—(axb)

= = — 3 = Dac
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Rings
Let a and b be any elements of a ring (A, +, x).

ax(=b)=—(axb) and (—a) xb=—(axb)

(ax (=b)) + (a x b) =ax ((—=b) +b)
=ax0
=0

By one of the previous theorems on groups,
ax(=b)=—(axb)
The second part is proved analogously. O

= = — 3 = Dac
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Rings

Let a and b be any elements of a ring (A, +, x)

(—a) x (=b) =axb

(CONAHCYT INAOE)
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Rings

Let a and b be any elements of a ring (A, +, x).
(—a) x (=b) =axb
We apply the previous theorem twice
(—a) x (=b) = —(a x (=b)) =

—(—(axb)=axb

(CONAHCYT INAOE)
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Rings
Rings with extra features:

(CONAHCYT INAOE)
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Rings
Rings with extra features:

o Commutative rings. Multiplication is commutative.

(CONAHCYT INAOE)
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Rings

Rings with extra features:

o Commutative rings. Multiplication is commutative

o Division rings. There are inverses under multiplication (except for 0).

(CONAHCYT INAOE)
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Rings

Rings with extra features:
o Commutative rings. Multiplication is commutative.
o Division rings. There are inverses under multiplication (except for 0).

o Commutative division rings. Multiplication is commutative, and there are
inverses under multiplication (except for 0).
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Fields
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Fields
Definition

A field (A, +, x) is a commutative division ring.

(CONAHCYT INAOE)
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Fields

Definition

A field (A, +, x) is a commutative division ring.

Well-known fields are Q, R, and C.

(CONAHCYT INAOE)
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Loosely speaking

Group )

Field

(CONAHCYT INAOE)
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Vector spaces

Vector spaces
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Vector spaces

(V,F, +, x ) is called a vector space if
o (V, + ) is an abelian group. The elements of V' are known as vectors.

o (F, 4+, x) is a field. The elements of F' are known as scalars.

o fxveV, forallveVand f € F (scalar multiple).

o fx(v+w)=(fxv)+(fxw), forall fe F andv,weV (distributivity).
o 1 x v =v (scalar identity).

o (f+g)xv=(fxv)+(gxv),forall feF andv,weV (distributivity).
o fx(gxv)=(fxg)xv, forall fge FandveV.

(CONAHCYT INAOE)

Abstract algebra
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Vectors spaces

A book of abstract algebra, Charles C. Pinter

(CONAHCYT INAOE)
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Vectors spaces

(CONAHCYT INAOE)
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Vectors spaces

A,/gebra moderna, N. Herstein
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Relationship between algebraic structures

Set

Magma: Set w! closed bin. op.

Sumigroup: Magms whose bin, op. is assaciathve

Mandid: Samigroup w! deniity
Topslogiesi Group: Group w topelogy
TS Grougs Monoid wi inverses

Lis Group: A top. group thal is-a manifeld
T Abelian Group whoss bin op. is commulative
.-~ Lis Comespandance

e
Lin algabra AIgbia whos niltipic ation follows Jacobs idenly

Ring wio unity. Abalian group wi 2nd bin. op. undarwhich it is samégroup

Module:

L Grovp wi scalacs rom 3 rieg “=® Ring: Ring wio unty whose 2nd bin. op. forms 3 monold

Aigahea: Moduls wf muliphcation batwsan dements
Gommutative Ring: Ring whoss 2nd bin. op. s commetative
Fias Module: Moduls w/ basis | 5790800 e ’
Drion Ring: Ring wi multighcatis imversss fo nanizero slements
Integral Demai: Commutatie fing with 1o zota-doisars

L\“—‘

Unique Factorization Domaln: Int. Domain whers factorization is unique
A

thearem

Veetor Space: Module whose sealar fing is a f

Associatie Algebra: Algebra whose mult. is ulucmn'\‘

Fiald, integual
- N, Ipinna idoals ads mamal Brmesm
q
Crdered Field: Field with an ordering preseried by the oparations Principal Ideal Domamn Int. Domain where all ideals are generated by 1 element
“\a_y:smm
(The] Complate Crdered Field=Real numbers: Ordsred fild with LUS property

Eucliduan Domain: e, Domain w! waldséned Euclidean 3lgorthm

http://commons.wikimedia.org/wiki/File:Algebraic_structures.png

[m] = = =
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Ending
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Summary

Abstract algebra
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Homework

o What is a

set,
magma,

monoid,
group,
ring,
field,

module,
algebra,
lattice.

semigroup,

vector space,

@ There is only one group G of order 4 where z + z = ¢ for all x € G. Find its

Cayley table.

o Find all the groups of order 4 (remove automorphisms). Use Cayley tables.

(CONAHCYT INAOE)

Abstract algebra
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Homework

o Let #5(R) designate the set of all 2 x 2 matrices

-

whose entries are real numbers a, b, ¢, and d with the following addition and

multiplication
a b n r s| _|la+r
c d t u|l |c+t

c d

t u
Verify that .#>(R) is a ring.
What are the identity elements of .Z>(R).

Show that .#,(R) is not commutative.
Is #>(R) a field?

(CONAHCYT INAOE) Abstract algebra
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Thank you
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